A Pairwise Alignment Algorithm Which Favors Clusters of Blocks
نویسندگان
چکیده
Pairwise sequence alignments aim to decide whether two sequences are related and, if so, to exhibit their related domains. Recent works have pointed out that a significant number of true homologous sequences are missed when using classical comparison algorithms. This is the case when two homologous sequences share several little blocks of homology, too small to lead to a significant score. On the other hand, classical alignment algorithms, when detecting homologies, may fail to recognize all the significant biological signals. The aim of the paper is to give a solution to these two problems. We propose a new scoring method which tends to increase the score of an alignment when "blocks" are detected. This so-called Block-Scoring algorithm, which makes use of dynamic programming, is worth being used as a complementary tool to classical exact alignments methods. We validate our approach by applying it on a large set of biological data. Finally, we give a limit theorem for the score statistics of the algorithm.
منابع مشابه
gpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences
Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...
متن کاملخوشهبندی دادهها بر پایه شناسایی کلید
Clustering has been one of the main building blocks in the fields of machine learning and computer vision. Given a pair-wise distance measure, it is challenging to find a proper way to identify a subset of representative exemplars and its associated cluster structures. Recent trend on big data analysis poses a more demanding requirement on new clustering algorithm to be both scalable and accura...
متن کاملAn EM-like Algorithm for Motion Segmentation via Eigendecomposition
This paper presents an iterative maximum likelihood framework for motion segmentation via the pairwise checking of pixel blocks. We commence from a characterisation of the motion blocks in terms of a matrix of pairwise similarity weghts for their motion vectors. The eigenvectors of this similarity weight matrix represent the initial pairwise clusters, i.e the independant motions present in the ...
متن کاملThe Effect of Transitive Closure on the Calibration of Logistic Regression for Entity Resolution
This paper describes a series of experiments in using logistic regression machine learning as a method for entity resolution. From these experiments the authors concluded that when a supervised ML algorithm is trained to classify a pair of entity references as linked or not linked pair, the evaluation of the model’s performance should take into account the transitive closure of its pairwise lin...
متن کاملMultiple Genome Alignment by Clustering Pairwise Matches
We have developed a multiple genome alignment algorithm by using a sequence clustering algorithm to combine local pairwise genome sequence matches produced by pairwise genome alignments, e.g, BLASTZ. Sequence clustering algorithms often generate clusters of sequences such that there exists a common shared region among all sequences in each cluster. To use a sequence clustering algorithm for gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2005